A torque of 500 Nm is applied to a fly wheel rotating at $200 \mathrm{rad} / \mathrm{s}$. After 40 s its speed has doubled. What is the flywheel moment of inertia?

Newton's second law of motion adapted to describe the relation between torque and angular acceleration:

$$
\tau=I \alpha
$$

where τ-torque, I - moment of inertia, α - angular acceleration.

$$
\alpha=\frac{\tau}{I}
$$

The angular acceleration can be defined as:

$$
\alpha=\frac{\Delta \omega}{\Delta t}
$$

Therefore:

$$
\begin{gathered}
\frac{\Delta \omega}{\Delta t}=\frac{\tau}{I} \\
I=\frac{\tau}{\frac{\Delta \omega}{\Delta t}}=\frac{\tau \Delta t}{\Delta \omega}=\frac{500 \mathrm{~N} * \mathrm{~m} * 40 \mathrm{~s}}{200 \frac{\mathrm{rad}}{\mathrm{~s}}}=100 \mathrm{~kg} * \mathrm{~m}^{2}
\end{gathered}
$$

Answer: $100 \mathrm{~kg} * \mathrm{~m}^{2}$

