A ball kept on a wall is pushed horizontally with certain velocity and allowed to move under gravity. Such a motion is two-dimensional motion with ball covering displacements in both x and y-directions. But both the x \& y direction motions are independent of each other. Hence, motion in x-direction can be considered as similar to straight line motion with no acceleration. Motion in y-direction can be considered as free fall under gravity. In the figure shown, ball is pushed horizontally from a height of 19 m .If there is no energy loss when particle collides at point B on ground, find the maximum height attained by the particle after it rebounds.

Solution

When a ball is pushed horizontally with certain velocity v_{x} from height $h=19 \mathrm{~m}$ its energy consist of kinetic energy and potential energy:

$$
E=\frac{m v_{x}^{2}}{2}+m g h
$$

If there is no energy loss when particle collides at point B on ground energy conserves, so

$$
E=\frac{m v^{2}}{2}+m g h_{\max }
$$

when a ball at its maximum height.
But at maximum height ball have vertical component of velocity $v_{y}=0$ and its horizontal component of velocity v_{x} doesn't change. That's why $v=v_{x}$. So

$$
\begin{gathered}
\frac{m v_{x}^{2}}{2}+m g h=\frac{m v^{2}}{2}+m g h_{\max }, v=v_{x} . \\
m g h=m g h_{\max } \rightarrow h_{\max }=h=19 \mathrm{~m}
\end{gathered}
$$

Answer: 19 m.

