Ramen covers one-fourth of his total journey with a speed of $v 1 \mathrm{~m} / \mathrm{s}$ and the remaining journey with a speed of $v 2 \mathrm{~m} / \mathrm{s}$ find his average speed

## Solution:

Average velocity is determined by dividing the distance travelled by the time it takes to travel that far:
$v_{\text {average }}=\frac{\text { distance }}{\text { time }}=\frac{\mathrm{S}}{\mathrm{t}}=\frac{\mathrm{S}}{\mathrm{t}_{\mathrm{AB}}+\mathrm{t}_{\mathrm{BC}}}$
distance $A B: t_{A B}=\frac{S_{A B}}{v_{1}}=\frac{\frac{S}{4}}{v_{1}}=\frac{S}{4 v_{1}}$
distance $B C$ : $\mathrm{t}_{\mathrm{BC}}=\frac{\mathrm{S}_{\mathrm{BC}}}{\mathrm{v}_{2}}=\frac{\mathrm{S}-\frac{\mathrm{S}}{4}}{\mathrm{v}_{2}}=\frac{3 \mathrm{~S}}{4 \mathrm{v}_{2}}$
(3) and (2)in(1):
$v_{\text {average }}=\frac{S}{\frac{S}{4 v_{1}}+\frac{3 S}{4 v_{2}}}=\frac{S}{\frac{S\left(v_{2}+3 v_{1}\right)}{4 v_{1} v_{2}}}=\frac{4 v_{1} v_{2}}{v_{2}+3 v_{1}}$
Answer: average speed is $\frac{4 v_{1} v_{2}}{v_{2}+3 v_{1}}$


