In jaege's of internal diameter 5er's experiment, a capillary tube of internal diameter 0.0005 m dips 0.003 m inside water contain in a beaker. This difference in level of water manometer when the bubble is released 0.09 m . calculate surface tension of water.

Solution:

We know that the excess pressure inside the bubble of radius r is
$\frac{2 T}{r}=(H \rho g-h \sigma g)$ or $T=\frac{r g}{2}(H \rho-h \sigma)$.
Where H is the difference of levels of manometer when the bubble just detached from the orifice, h is the depth of orifice below the free surface of the liquid, ρ is the density of liquid inside the manometer and σ that of the experimental liquid.

Here $r=2.5 * 10^{-4} \mathrm{~m}, H=0.09 \mathrm{~m}, \mathrm{~h}=3 * 10^{-3} \mathrm{~m}=0.003 \mathrm{~m}, \rho=\sigma=10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

$$
T=\frac{2.5 * 10^{-4} * 9.8}{2}\left(0.09 * 10^{3}-0.003 * 10^{3}\right)=0.106 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

Answer: $0.106 \frac{N}{m}$.

