

A satellite has a mass of 6403 kg and is in a circular orbit 4.42×10^5 m above the surface of a planet. The period of the orbit is 2.3 hours. The radius of the planet is 4.73×10^6 m. What would be the true weight of the satellite if it were at rest on the planet's surface?

Solution

The height of orbit H . The radius of the planet - R . Distance between the planet and the satellite $H + R$.

The centripetal force F_c is provided by the force of gravity F_g :

$$F_g = F_c \rightarrow \frac{GMm}{(H + R)^2} = m\omega^2(H + R),$$

where G – constant of gravity, M - the mass of the planet, m - mass of satellite, ω – angular velocity of the orbit.

We know that $\omega = \frac{2\pi}{T}$, where T - the period of the orbit.

Now we have

$$\frac{GMm}{(H + R)^2} = \frac{4\pi^2m(H + R)}{T^2} \rightarrow \frac{GM}{(H + R)^2} = \frac{4\pi^2(H + R)}{T^2}.$$

The mass of the planet

$$M = \frac{4\pi^2((H + R)^3)}{T^2G} = \frac{4\pi^2(4.42 * 10^5 + 4.73 * 10^6)^3}{(2.3 \text{ h} * 3600 \frac{\text{s}}{\text{h}})^2 * 6.67 * 10^{-11}} = 1.19 * 10^{24} \text{ kg}.$$

The gravitational force, F_g , is also equal to $m * g$. To find the acceleration,

$$mg = \frac{GMm}{R^2} \rightarrow g = \frac{GM}{R^2}.$$

At the surface of the planet,

$$g = \frac{6.67 * 10^{-11} * 1.19 * 10^{24}}{(4.73 * 10^6)^2} = 3.55 \frac{\text{m}}{\text{s}^2}.$$

So,

$$F_g = mg = 6403 * 3.55 = 23 \text{ kN}.$$

Answer: 23 kN.