Assignment

A person walks 26 m East and then walks 31 m at an angle 36° North of East. What is the magnitude of the total displacement?

Solution

So, firstly a person walks 26 m East:

Then 31 m at an angle 36° North of East:

The next step is to construct the auxiliary lines. We formed the triangle ABC. The magnitude of the total displacement is the segment AB , highlighted in red.

The next step is to calculate the length of the segment DC from the triangle BDC , using the cosine function.
$\operatorname{Cos} 36^{\circ}=\mathrm{DC} / \mathrm{BC}$
$\mathrm{DC}=\mathrm{BC} * \operatorname{Cos} 36^{\circ}=31 \mathrm{~m} * 0,81=25 \mathrm{~m}$
Now we can calculate the length of the segment AD :

$$
\mathrm{AD}=\mathrm{AC}-\mathrm{DC}=26 \mathrm{~m}-25 \mathrm{~m}=1 \mathrm{~m}
$$

Using the Pythagorean theorem we can find the required value (the length of the segment AB):
$A B^{2}=A D^{2}+B D^{2}$

$$
\begin{gathered}
B D^{2}=B C^{2}-D C^{2}=961-625=336 \\
A B^{2}=336+1=337
\end{gathered}
$$

$\mathrm{AB}=18,4 \mathrm{~m}$

