Question \#36178

A fly ball is hit with an angle of 80 degrees with a initial speed of
$40.0 \mathrm{~m} / \mathrm{s}$. How long does the fielder have to get underneath the ball? And
what is the maximum height attained by the ball?
Solution:

Let
$v_{0}=40 \mathrm{~m} / \mathrm{sec}$
$\alpha=80^{\circ}$
$t=$? , $H=$?
$H=v_{y 0} t_{h}-\frac{1}{2} g t_{h}{ }^{2}$ where t_{h} is the time of moving upward, $v_{y 0}$ is the vertical compound of initial velocity
$v_{y}=v_{y 0}-g t_{h}$
Such as the velocity in the highest point is equal to zero
$v_{y 0}=g t_{h}, \boldsymbol{t}_{\boldsymbol{h}}=\frac{\boldsymbol{v}_{\boldsymbol{y} \mathbf{0}}}{\boldsymbol{g}}$
$H=v_{y 0} \frac{v_{y 0}}{g}-\frac{1}{2} g\left(\frac{v_{y 0}}{g}\right)^{2}$
$H=\frac{1}{2} \frac{v_{y 0}{ }^{2}}{g}$
The full time is $t=2 t_{h}$
$t=2 \frac{v_{y 0}}{g}$
$v_{y 0}=v_{0} \sin \alpha$
$H=\frac{1}{2} \frac{\left(v_{0} \sin \alpha\right)^{2}}{g}$
$t=2 \frac{v_{0} \sin \alpha}{g}$
$t=2 \frac{40 * \sin 80}{9.8}=8 \mathrm{sec}$
$H=\frac{1}{2} \frac{(40 * \sin 80)^{2}}{9.8}=79.2 \mathrm{~m}$
Answer: 8 sec, 79.2 m.

