A building superintendent twirls a set of keys in a circle at the end of a cord. If the keys have a centripetal acceleration of $127 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ and the cord has a length of 0.22 m , what is the tangential speed of the keys?

Solution.

$$
\begin{gathered}
a=127 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, r=0.22 m \\
v-?
\end{gathered}
$$

The centripetal acceleration is:

$$
a=\frac{v^{2}}{r}
$$

v - the tangential speed of the keys;
r - the length of the cord.
The tangential speed of the keys:

$$
\begin{gathered}
v^{2}=a r \\
v=\sqrt{a r} \\
v=\sqrt{127 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.22 \mathrm{~m}}=5.3 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: The tangential speed of the keys is $v=5.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.

