The position x of particle with respect to time t along x -axis is given by $\mathrm{X}=9 \mathrm{t}$ square -t cube, where x is in meters and t in seconds. What will be the position of this particle when it achieves maximum speed along the $+x$ direction?

Solution.

$$
\begin{gathered}
x=\left(9 t^{2}-t^{3}\right) m \\
x-? \\
x=9 t^{2}-t^{3}
\end{gathered}
$$

The speed is the derivative of the position as a function of time:

$$
\begin{aligned}
& v=\frac{d x}{d t}=18 t-3 t^{2} \\
& v=\left(18 t-3 t^{2}\right) \frac{m}{s}
\end{aligned}
$$

The acceleration is the derivative of the speed as a function of time:

$$
\begin{aligned}
& a=\frac{d v}{d t}=18-6 t \\
& a=(18-6 t) \frac{m}{s^{2}}
\end{aligned}
$$

When the particle achieves maximum speed the acceleration is zero: $a=0$.

$$
\begin{gathered}
18-6 t=0 \\
t=3 s
\end{gathered}
$$

When the particle achieves maximum speed $t=3 s$.
The position of this particle at $t=3 s$:

$$
x=\left(9 \cdot 3^{2}-3^{3}\right) m=54 m
$$

Answer: The position of this particle when it achieves maximum speed is $x=54 \mathrm{~m}$.

