Motion of a particle is given by equation $s=(3 t$ cube $+7 t$ square $+14 t+8) m$ the value of acceleration of the particle at $\mathrm{t}=1 \mathrm{~s}$ is?

Solution.

$$
\begin{gathered}
s=\left(3 t^{3}+7 t^{2}+14 t+8\right) m, t=1 s ; \\
a-? \\
s=3 t^{3}+7 t^{2}+14 t+8
\end{gathered}
$$

The velocity is the derivative of the displacement vector as a function of time:

$$
\begin{gathered}
v=\frac{d s}{d t}=9 t^{2}+14 t+14 \\
v=\left(9 t^{2}+14 t+14\right) \frac{m}{s}
\end{gathered}
$$

The acceleration is the derivative of the velocity vector as a function of time:

$$
\begin{aligned}
& a=\frac{d v}{d t}=18 t+14 . \\
& a=(18 t+14) \frac{m}{s^{2}}
\end{aligned}
$$

The value of acceleration of the particle at $t=1 s$:

$$
\begin{gathered}
a=18 \cdot 1+14=32 . \\
a=32 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

Answer: The value of acceleration of the particle at $t=1 \mathrm{~s}$ is $a=32 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

