A particle moves along a straight line such that its displacement at any time t given by $s=(t$ cube- 6 t square- $3 \mathrm{t}+4$) meters .the velocity when the acceleration is zero is

Velocity is the rate of change of the position of an object:

$$
v=\frac{d s}{d t}=\frac{d}{d t}\left(t^{3}-6 t^{2}-3 t+4\right)=3 t^{2}-12 t-3
$$

Acceleration is the rate of change of the velocity of an object:

$$
a=\frac{d v}{d t}=\frac{d}{d t}\left(3 t^{2}-12 t-3\right)=6 t-12
$$

If the acceleration equals zero:

$$
6 t-12=0
$$

Therefore $t=2$
So, the velocity when the acceleration is zero is:

$$
v(2)=3 * 2^{2}-12 * 2-3=12-24-3=-15 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $v=-15 \frac{\mathrm{~m}}{\mathrm{~s}}$

