A particle travels half of the distance of a straight journey with speed $6 \mathrm{~m} / \mathrm{s}$.the remaining part of distance is covered with speed $2 \mathrm{~m} / \mathrm{s}$ for half of the time of remaining journey and with speed $4 \mathrm{~m} / \mathrm{s}$ for the other half of time .the average speed of the particle is

Solution

Let the total distance be d.
In the first part of journey particle travels distance $\frac{d}{2}$ with speed $6 \mathrm{~m} / \mathrm{s}$, so corresponding time:

$$
t_{1}=\frac{\frac{d}{2}}{6}=\frac{d}{12} s
$$

The times of second and third parts of journey are equal $t_{2}=t_{3}$. The sum of distances of these parts are $\frac{d}{2}$. Let the distance of second part of journey be x. Then

$$
\begin{gathered}
t_{2}=t_{3} \rightarrow \frac{x}{2}=\frac{\frac{d}{2}-x}{4} \rightarrow x=\frac{d}{6} m, \\
t_{2}=\frac{\frac{d}{6}}{2}=\frac{d}{12}=t_{3} .
\end{gathered}
$$

Total time of journey:

$$
T=t_{1}+t_{2}+t_{3}=3 \frac{d}{12}=\frac{d}{4} s
$$

Average Speed:

$$
V=\frac{d}{T}=4 \frac{m}{s}
$$

Answer: $4 \frac{\mathrm{~m}}{\mathrm{~s}}$.

