Two points x 1 and x 2 at $\mathrm{x}=0$ and $\mathrm{x}=1 \mathrm{~m}$ are observed. The transverse motion of the two points are found to be as follows:
$y 1(x, t)=0.2 \sin 3 \pi t$
and $\mathrm{y} 2(\mathrm{x}, \mathrm{t})=0.2 \sin (3 \pi \mathrm{t}+\pi / 8)$
Calculate the frequency, wavelength and speed of the wave.

$$
y_{1}(x, t)=0.2 \sin 3 \pi t=0.2 \sin 2 \pi \frac{t}{\frac{2}{3}}
$$

where $T=\frac{2}{3}-$ period of motion
Frequency equals:

$$
\begin{gathered}
f=\frac{1}{T}=\frac{1}{\frac{2}{3}}=\frac{3}{2} \frac{1}{s} \\
y_{2}(x, t)=0.2 \sin \left(3 \pi t+\frac{\pi}{8}\right)=0.2 \sin 3 \pi\left(\mathrm{t}+\frac{\pi}{24}\right)
\end{gathered}
$$

where $\Delta t=\frac{\pi}{24}$ - delay time
Therefore, speed of the wave equals:

$$
v=\frac{1 m}{\Delta t}=\frac{24}{\pi} \frac{m}{s}
$$

The wavelength λ of a sinusoidal waveform traveling at constant speed v is given by:

$$
\lambda=\frac{v}{f}=\frac{24}{\pi} \frac{2}{3}=\frac{16}{\pi} m
$$

Answer: $f=3 / 2 \frac{1}{s}, v=\frac{24}{\pi} \frac{m}{s}, \lambda=\frac{16}{\pi} m$

