Question \#36084

Hi! Could you please explain the solution to me step by step?

At a party some balloons are filled with helium. To fill them they have used gas from a bottle with volume $45 \mathrm{dm}^{\wedge} 3$ and the pressure 1.00 MPa . The balloons are made to hold a pressure of 150 kPa . How many such balloons you can inflate if the balloons have an average volume of $4.0 \mathrm{dm}^{\wedge} 3$?

Solution:

Let
$V_{\text {bottle }}=45 L$
$P_{\text {bottle }}=1.00 \mathrm{MPa}=1000 \mathrm{kPa}$
$V_{\text {balloons }}=4 L$
$P_{\text {balloons }}=150 \mathrm{kPa}$
$N_{\text {balloons }}=$?
According to the Boyle's law (isothermal process)
$V_{\text {bottle }} P_{\text {bottle }}=P_{\text {balloons }} V_{\text {total }}$ were $V_{\text {total }}$ is the total volume of the helium after inflating balloons Such as after inflating the balloons in bottle is the helium too
$V_{\text {total }}=N_{\text {balloons }} V_{\text {balloons }}+V_{\text {bottle }}$
$V_{\text {bottle }} P_{\text {bottle }}=P_{\text {balloons }}\left(N_{\text {balloons }} V_{\text {balloons }}+V_{\text {bottle }}\right)$
$N_{\text {balloons }}=\frac{\frac{V_{\text {bottle }} P_{\text {bottle }}}{P_{\text {balloons }}}-V_{\text {bottle }}}{V_{\text {balloons }}}$
$N_{\text {balloons }}=\frac{\frac{45 * 1000}{150}-45}{4}=63.75$
Such as the number of the balloons must be integer
Answer: 63 balloons.

