1. A worker drops a wrench from the top of a tower 87.0 m tall. What is the velocity when the wrench strikes the ground?
$h=87 \mathrm{~m}$

Solution.

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
A wrench moves under the force of gravity. Its movement is with the constant acceleration g from the rest, so the distance depends on time as:

$$
\begin{equation*}
y=\frac{g t^{2}}{2} \tag{1}
\end{equation*}
$$

And the velocity depends linearly on time:

$$
\begin{equation*}
v=a t . \tag{2}
\end{equation*}
$$

Lets express the time of the falling from the Eq. (1) and substitute it into the Eq. (2).
$h=\frac{g t^{2}}{2}, \quad t=\sqrt{\frac{2 h}{g}}$.
$v=g \cdot \sqrt{\frac{2 h}{g}}=\sqrt{2 g h}$.
So, the velocity of the wrench, when it strikes the ground, is: $v=\sqrt{2 g h}$.
Let check the dimension.
$[v]=\sqrt{\frac{m}{s^{2}} \cdot m}=\sqrt{\frac{m^{2}}{s^{2}}}=\frac{m}{s}$.
Let evaluate the quantity.
$v=\sqrt{2 \cdot 9.8 \cdot 87} \approx 41.3\left(\frac{m}{s}\right)$.
Answer: $41.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.

