

1. A worker drops a wrench from the top of a tower 87.0 m tall. What is the velocity when the wrench strikes the ground?

$$h = 87 \text{ m}$$

$$g = 9.8 \frac{\text{m}}{\text{s}^2}$$

$$v - ?$$

*Solution.*

A wrench moves under the force of gravity. Its movement is with the constant acceleration  $g$  from the rest, so the distance depends on time as:

$$y = \frac{g t^2}{2}. \quad (1)$$

And the velocity depends linearly on time:

$$v = at. \quad (2)$$

Lets express the time of the falling from the Eq. (1) and substitute it into the Eq. (2).

$$h = \frac{g t^2}{2}, \quad t = \sqrt{\frac{2h}{g}}.$$

$$v = g \cdot \sqrt{\frac{2h}{g}} = \sqrt{2gh}.$$

So, the velocity of the wrench, when it strikes the ground, is:  $v = \sqrt{2gh}$ .

Let check the dimension.

$$[v] = \sqrt{\frac{m}{s^2} \cdot m} = \sqrt{\frac{m^2}{s^2}} = \frac{m}{s}.$$

Let evaluate the quantity.

$$v = \sqrt{2 \cdot 9.8 \cdot 87} \approx 41.3 \left( \frac{m}{s} \right).$$

**Answer:**  $41.3 \frac{m}{s}$ .