Question 36011

Let a denote the acceleration due to gravity on the planet. If objects initial velocity was zero, then law of motion is $y(t)=h-\frac{a t^{2}}{2}$. If $\quad y(t)=0 \quad$ (object has already fallen), then

$$
h=\frac{a t^{2}}{2} \Rightarrow a=\frac{2 h}{t^{2}}=\frac{2 \cdot 54 \mathrm{~m}}{3^{2} \mathrm{~s}^{2}}=12 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

Hence, acceleration due to gravity on the planet is $a=12 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

