An archer shoots an arrow with a speed of $200 \mathrm{ft} / \mathrm{s}$, if the arrow travels 2 ft before being shoot, what was its acceleration (supposing it's constant)? Express in $\mathrm{m} / \mathrm{s}^{\wedge} 2 \ldots$ I got $-30.78 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, is that correct?

Solution:

$\mathrm{S}=2 \mathrm{ft}=0.61 \mathrm{~m}-$ distance, that arrow travels before being shoot;
$\mathrm{V}=61 \frac{\mathrm{~m}}{\mathrm{~s}}$ - speed of the arrow;
a - acceleration of the arrow;
t - time before arrow being shoot;
The equation of motion for the arrow along the X axis:
$S=\frac{\mathrm{at}^{2}}{2}$
The rate equation for the arrow along the X axis:
$\mathrm{V}=0+$ at
$t=\frac{V}{a}$
(2)in(1):
$S=\frac{a\left(\frac{V}{a}\right)^{2}}{2}=\frac{V^{2}}{2 a}$
$a=\frac{\mathrm{V}^{2}}{2 \mathrm{~S}}=\frac{\left(61 \frac{\mathrm{~m}}{\mathrm{~S}}\right)^{2}}{2 \cdot 0.61 \mathrm{~m}}=3050 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
Answer: acceleration of the arrow is $3050 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

