The water drops fall at regular intervals from a tap 5 m above the ground. The third is leaving he tap at instant the first drop touches the ground. How far above the ground is the second drop at that instant ? take $\mathrm{g}=10$

Solution:

$H=5 m-$ tap height above the ground;
h - height of the second drop when first drop touches the ground;
t - interval of falls;
An equation of motion for the first drop:
$\mathrm{H}=\frac{\mathrm{g}\left(\mathrm{t}_{1}\right)^{2}}{2}=\frac{\mathrm{g}(2 \mathrm{t})^{2}}{2}=\frac{4 \mathrm{t}^{2} \mathrm{~g}}{2}=2 \mathrm{t}^{2} \mathrm{~g}$ (1)
An equation of motion for the second drop:
$\mathrm{d}=\frac{\mathrm{g}\left(\mathrm{t}_{2}\right)^{2}}{2}=\frac{\mathrm{g}(\mathrm{t})^{2}}{2}=\frac{\mathrm{t}^{2} \mathrm{~g}}{2}$
(2) $\div(1):$
$\frac{\mathrm{d}}{\mathrm{H}}=\frac{\mathrm{t}^{2} \mathrm{~g}}{2} \cdot \frac{1}{2 \mathrm{t}^{2} \mathrm{~g}}=\frac{1}{4}$
$\mathrm{d}=\frac{\mathrm{H}}{4}=\frac{5 \mathrm{~m}}{4}=1.25 \mathrm{~m} \Rightarrow \mathrm{~h}=\mathrm{H}-\mathrm{d}=5 \mathrm{~m}-1.25 \mathrm{~m}=3.75 \mathrm{~m}$
Answer: height of the second drop when first drop touches the ground.

