

A ball kept on a wall is pushed horizontally with certain velocity and allowed to move under gravity. Such a motion is two-dimensional motion with ball covering displacements in both x and y directions. But both the x & y direction motions are independent of each other. Hence, motion in x-direction can be considered as similar to straight line motion with no acceleration. Motion in y-direction can be considered as free fall under gravity. In the figure shown, ball is pushed horizontally from a height of 19.6 m, with initial velocity as 10 m/s
 [Take $g = 9.8 \text{ m/s}^2$]

10. The horizontal displacement of projectile after 1 sec.

Solution:

Equation of motion of the ball along the X-axis:

$$S = V_x t + \frac{g_x t^2}{2},$$

g_x – the projection of the gravitational acceleration on the X axis

$$g_x = 0, V_x = V = 10 \frac{\text{m}}{\text{s}}, \Rightarrow$$

$$S = Vt = 10 \frac{\text{m}}{\text{s}} \cdot 1 \text{ s} = 10 \text{ m}$$

Answer: The horizontal displacement of projectile after 1 sec is 10m

