A ball kept on a wall is pushed horizontally with certain velocity and allowed to move under gravity. Such a motion is two-dimensional motion with ball covering displacements in both x and y directions. But both the $x \& a m p ; y$ direction motions are independent of each other. Hence,
motion in x-direction can be considered as similar to straight line motion with no acceleration. Motion in y-direction can be considered as free fall under gravity. In the figure shown, ball is pushed horizontally from a height of 19.6 m , with initial velocity as $10 \mathrm{~m} / \mathrm{s}$
[Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} 2$]
10. The horizontal displacement of projectile after 1 sec .

Solution:

Equation of motion of the ball along the X -axis:
$S=V_{x} t+\frac{g_{x} t^{2}}{2}$,
g_{x} - the projection of the gravitational acceleration on the X axis
$\mathrm{g}_{\mathrm{x}}=0, \mathrm{~V}_{\mathrm{x}}=\mathrm{V}=10 \frac{\mathrm{~m}}{\mathrm{~s}}, \Rightarrow$
$\mathrm{S}=\mathrm{Vt}=10 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1 \mathrm{~s}=10 \mathrm{~m}$
Answer: The horizontal displacement of projectile after 1 sec is 10 m

