Forces of 8.85 N and 2.21 N act at right angles on a stack. What is the mass of the stack if it accelerates at a rate of $4.4 \mathrm{~m} / \mathrm{s}^{\wedge} 2$?

Solution:

$\mathrm{F}_{1}=8.85 \mathrm{~N}-$ first force;
$\mathrm{F}_{2}=2.21 \mathrm{~N}-$ second force;
$a=4.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ - acceleration of the stack;
The resultant force F of the triangle $A B C$:
$\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2} ;|\overrightarrow{\mathrm{F}}|=\sqrt{\left|\overrightarrow{\mathrm{F}}_{1}\right|^{2}+\left|\overrightarrow{\mathrm{F}}_{2}\right|^{2}}$
$\mathrm{F}=\sqrt{\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}}$
Newton's second law for the stack:
$\vec{F}=m \vec{a}$
$x: F=m a$
$\mathrm{m}=\frac{\mathrm{F}}{\mathrm{a}}$
(1) in(2):
$\mathrm{m}=\frac{\mathrm{F}}{\mathrm{a}}=\frac{\sqrt{\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}}}{\mathrm{a}}=\frac{\sqrt{(8.85 \mathrm{~N})^{2}+(2.21 \mathrm{~N})^{2}}}{4.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=2.07 \mathrm{~kg}$
Answer: mass of the stack is 2.07 kg .

