A stone is thrown from ground level at $79 \mathrm{~m} / \mathrm{s}$. Its speed when it reaches its highest point is $60 \mathrm{~m} / \mathrm{s}$.
Find the angle, above the horizontal, of the stone's initial velocity.
Answer in units of 。

Solution:

$V_{0}=79 \frac{\mathrm{~m}}{\mathrm{~s}}-$ initial velocity of the stone;
$V_{1}=60 \frac{\mathrm{~m}}{\mathrm{~s}}-$ velosity at the highest point;
α - angle, above the horizontal, of the stone's initial velocity;
During flight, acceleration of gravity is directed along the Y -axis, so the horizontal component of velocity does not change. horizontal component from the right triangle $A B C$:
$\Delta A B C: \cos \alpha=\frac{V_{x}}{V_{0}}$
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{0} \cdot \cos \alpha$
When the stone is located at the top of the trajectory (highest point), the vertical component of the velocity is zero, then all speed - is the horizontal component.
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{x}}$
(2)in(1):
$\mathrm{V}_{1}=\mathrm{V}_{0} \cdot \cos \alpha$
$\cos \alpha=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{0}}$
$\alpha=\arccos \left(\frac{V_{1}}{V_{0}}\right)=\arccos \left(\frac{60 \frac{m}{s}}{79 \frac{m}{s}}\right)=41^{\circ}$
Answer: angle, above the horizontal, of the stone's initial velocity is 41°.

