A small sphere is hung by a string from the ceiling of a van. When the van is stationary, the sphere hangs vertically. However, when the van accelerates, the sphere swings backward so that the string makes an angle of θ with respect to the vertical. Find the acceleration of the van when $\theta=13.2^{\circ}$.

Solution:

a - acceleration of the van ;
$\theta=13.2^{\circ}-$ angle that the string makes with respect to the vertical;
m - mass of the sphere
When the van accelerates, the ball relative to the van is in a non-inertial reference frame, because $V \neq$ const. Because of this on the sphere begins to act inertial force directed against the motion of the van:
$F_{i}=m a$
Right triangle $A B C$:
$\tan \theta=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{mg}}$
(1)in(2):
$\tan \theta=\frac{\mathrm{ma}}{\mathrm{mg}}$
$\mathrm{a}=\mathrm{g} \cdot \tan \theta=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \tan 13.2^{\circ}=2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Answer: acceleration of the van is $2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

