

A potentiometer wire of length 100cm has a resistance of 10Ω . It is connected in series to a resistance R and a cell of emf 2V and negligible internal resistance. A source of emf of $10mV$ is balanced by a length of 40cm of the potentiometer wire. What is the value of the resistance R ?

a. 200Ω b. 950Ω c. 2000Ω d. 790Ω

Solution

If J is current through the potentiometer wire then

$$J = \frac{E}{R + 10} = \frac{2}{R + 10}$$

As the source of e.m.f. $E' = 10mV = 10 * 10^{-3}V$ is balanced by a length of 40cm of the potentiometer wire, it follows that $10 * 10^{-3} = J * \text{resistance of } 40\text{cm of the potentiometer wire}$.

Now resistance of 40cm of the potentiometer wire = $\frac{10}{100} * 40 = 4\Omega$.

So

$$10 * 10^{-3} = \frac{2}{R + 10} * 4 \rightarrow R = 790\Omega$$

Answer: d. 790Ω .