How many revolutions per minute would a 26 m -diameter Ferris wheel need to make for the passengers to feel "weightless" at the topmost point?

Solution:

$D=26 m$ - diameter of the wheel;
F_{c} - centrifugal force;
$V-v e l o c i t y$ at the topmost point;

Newton's second law for passengers at the topmost point ("weightless" means that the resultant of all forces is zero)
$\overrightarrow{\mathrm{mg}}+\overrightarrow{\mathrm{F}_{\mathrm{c}}}=\overrightarrow{0}$
$\mathrm{y}:-\mathrm{mg}+\mathrm{F}_{\mathrm{c}}=0$
$\mathrm{F}_{\mathrm{c}}=\mathrm{mg}$
Formula of the centrifugal force ($D=2 R$):
$\mathrm{F}_{\mathrm{c}}=\mathrm{m} \frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{2 \mathrm{mV}^{2}}{\mathrm{D}}$
(2)in(1):
$\frac{2 m V^{2}}{D}=m g$
$2 \mathrm{mV}^{2}=\mathrm{Dmg}$
$\mathrm{V}=\sqrt{\frac{\mathrm{Dg}}{2}}$
Formula for the frequency:
$v=\frac{1}{\mathrm{~T}}=\frac{1}{\frac{2 \pi \mathrm{R}}{\mathrm{V}}}=\frac{\mathrm{V}}{2 \pi \mathrm{R}}=\frac{\mathrm{V}}{\pi \mathrm{D}}$
(2)in(3):
$v=\sqrt{\frac{\mathrm{Dg}}{2}} \cdot \frac{1}{\pi \mathrm{D}}=\sqrt{\frac{\mathrm{g}}{2 \pi \mathrm{D}}}=\sqrt{\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{2 \pi \cdot 26 \mathrm{~m}}}=0.245 \frac{\text { revolutions }}{\mathrm{sec}}=14.7 \frac{\text { revolutions }}{\mathrm{min}}$
Answer: Ferris wheel need to make $14.7 \frac{\text { revolutions }}{\min }$ for the passengers to feel "weightless" at the topmost point.

