A circular platform is mounted on a frictionless vertical axle. Its radius $\mathrm{R}=2 \mathrm{~m}$ and its moment of Inertia about the axle is $200 \mathrm{Kg} \mathrm{m} \wedge 2$. It is initially at rest. A 50 kg man stands on the edge of the platform and begins to walk along the edge at the speed of $1 \mathrm{~m} / \mathrm{s}$ relative to the ground. Time taken by the man to complete one revolution is

1) $\pi \mathrm{s}$
2) $3 \pi / 2 \mathrm{~s}$
3) $2 \pi \mathrm{~s}$
4) $\pi / 2 \mathrm{~s}$

The law of conservation of angular momentum states that when no external torque acts on an object or a closed system of objects, no change of angular momentum can occur. Therefore:

$$
\begin{gathered}
L_{\text {system }}=\text { const }=L_{\text {man }}+L_{\text {platform }}=0, \quad \Rightarrow \quad L_{\text {man }}=-L_{\text {platform }} \\
L_{\text {man }}=m v R
\end{gathered}
$$

m - mass of the man, v - speed of the man relative to the ground, R - radius of the platform.

$$
L_{\text {platform }}=I \omega
$$

I - moment of inertia, ω - angular velocity
Therefore, $\omega=\frac{L_{\text {platform }}}{I}=-\frac{L_{\text {man }}}{I}$
So, speed of man relative to the platform equals:

$$
v_{p l}=v-\omega R=v+\frac{m v R}{I} R=v\left(1+\frac{m R^{2}}{I}\right)
$$

Therefore, time taken by the man to complete one revolution is

$$
t=\frac{2 \pi R}{v_{p l}}=\frac{2 \pi R}{v\left(1+\frac{m R^{2}}{I}\right)}=2 * \frac{2}{1(1+1)} \pi=2 \pi \mathrm{~s}
$$

Answer: 3) $2 \pi \mathrm{~s}$

