Task. A sinusoidal wave is described by $y(x, t)=4.0 \sin (4.20 x-5.95 t) \mathrm{cm}$, where x is the position along the wave propagation. Determine the amplitude, wave number, wavelength, frequency and velocity of the wave.

Solution. In general, a sinusoidal wave has the following equation:

$$
y(x, t)=A \sin (k x-\omega t),
$$

where A is the amplitude, k is the wave number and ω is the angular frequency.
There is no information about the measures of x and t. Therefore let us denote the measure of x by L and the measure of time t by T. Then

$$
A=4.0 \mathrm{~cm}, \quad k=4.20 L^{-1}, \quad \omega=5.95 T^{-1}
$$

Recall that

$$
k=\frac{2 \pi}{\lambda}, \quad \omega=2 \pi f
$$

where λ is the wavelength, and f is the frequency. Therefore

$$
\begin{aligned}
& \lambda=\frac{2 \pi}{k}=\frac{2 \cdot 3.14}{4.20} \approx 1.50 \mathrm{~L} \\
& f=\frac{\omega}{2 \pi}=\frac{5.95}{2 \cdot 3.14} \approx 0.95 \mathrm{~T}^{-1}
\end{aligned}
$$

The velocity of the wave is given by the formula:

$$
v=\frac{\omega}{k}=\frac{5.95}{4.20} \approx 1.42 L / T .
$$

Answer.

$$
\begin{aligned}
\text { amplitude: } A & =4.0 \mathrm{~cm}, \\
\text { wave number: } k & =4.20 \mathrm{~L}^{-1}, \\
\text { wavelength: } \lambda & =1.50 \mathrm{~L}, \\
\text { frequency: } f & =0.95 T^{-1}, \\
\text { velocity: } v & =1.42 L / T .
\end{aligned}
$$

