A bird flies in the east direction with a speed of $5 \mathrm{~ms}-1$. The wind is blowing towards north at a
speed of $3 \mathrm{~ms}-1$. Determine the relative velocity of the bird with respect to the wind. Draw appropriate diagram for solving the problem.

Solution:

$\mathrm{V}_{\mathrm{b}}=5 \frac{\mathrm{~m}}{\mathrm{~s}}-$ speed of the bird;

$\mathrm{V}_{\mathrm{w}}=3 \frac{\mathrm{~m}}{\mathrm{~s}}$ - speed of the wind;
Relative velocity of the bird with respect to the wind is the difference between vectors of the bird's and the wind's velocities:

$$
\overline{\mathrm{V}}_{\mathrm{b}, \mathrm{w}}=\overline{\mathrm{V}}_{\mathrm{b}}-\overline{\mathrm{V}}_{\mathrm{w}}=\overline{\mathrm{V}}_{\mathrm{b}}+\left(-\overline{\mathrm{V}}_{\mathrm{w}}\right)
$$

Hypotenuse of the right triangle $A B C$:

$$
\begin{aligned}
\left|\overline{\mathrm{V}}_{\mathrm{b}, \mathrm{w}}\right|=\sqrt{\overline{\mathrm{V}}_{\mathrm{b}}^{2}+\overline{\mathrm{V}}_{\mathrm{w}}^{2}}=\sqrt{\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\left(3 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=\sqrt{34 \frac{\mathrm{~m}}{\mathrm{~s}}} \\
=5.8 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: relative velocity of the bird with respect to the wind is $5.8 \frac{\mathrm{~m}}{\mathrm{~s}}$

