Question \#35699

A radar locates an enemy bomber 400 km away and flying directly toward the capital city at a speed of 600 km per hour. At the same moment, a fighter plane leaves the capital city at a speed of 750 km per hour. When and where will the fighter plane intersect the enemy bomber?

Solution:
Let
$S_{0}=400 \mathrm{~km}$
$v_{1}=600 \mathrm{~km} / \mathrm{h}$
$v_{2}=750 \mathrm{~km} / \mathrm{h}$
$S=$?,$t_{x}=$?

The distance between the bomber and the capital city defined as
$S=S_{0}-v_{1} t$ were t is the time
The distance between the fighter plan and the capital city defined as
$S=v_{2} t$ were t is the time
When the fighter plan intersect the bomber (through time t_{x}) their distances is equal

$$
\begin{aligned}
& S_{0}-v_{1} t_{x}=v_{2} t_{x} \\
& t_{x}=\frac{s_{0}}{v_{1}+v_{2}}
\end{aligned}
$$

The distance from the city at this time is
$\boldsymbol{S}=\boldsymbol{t}_{\boldsymbol{x}} \boldsymbol{v}_{\mathbf{2}}$
$t_{x}=\frac{400}{600+750}=0.3 \mathrm{~h}$
$S=0.3 * 750=225 \mathrm{~km}$
Answer: through $0.3 \mathrm{~h}(\mathrm{or} 18 \mathrm{~min}$) at distance 225 km from city.

