

Write the equation of motion of a simple harmonic oscillator which has an amplitude of 5 cm and it executes 150 oscillations in 5 minutes with an initial phase of 45° . Also obtain the value of its maximum velocity.

Solution:

$A = 5 \text{ cm} = 0.05 \text{ m}$ – amplitude of harmonic oscillations;

$$\varphi_0 = 45^\circ = \frac{\pi}{4} \text{ – initial phase ;}$$

Equation of motion of a simple harmonic oscillator:

$$x(t) = A \cos(\omega t + \varphi_0)$$

To find the equation to find the cyclic frequency. Cyclic frequency shows how many radians moved the body per unit of time:

$$\omega = 2\pi \cdot f = 2\pi \cdot \frac{150 \text{ oscillations}}{5 \cdot 60 \text{ s}} = \pi \text{ Hz} \approx 3.14 \text{ Hz} \Rightarrow$$

$$x(t) = A \cos(\omega t + \varphi_0) = 0.05 \left(\pi t + \frac{\pi}{4} \right).$$

To find the maximum speed, we need to take the derivative of $x(t)$:

$$V(t) = x'(t)$$

$$V(t) = -A\omega \sin(\omega t + \varphi_0)$$

$-1 \leq \sin(\omega t + \varphi_0) \leq 1 \Rightarrow$ maximum speed when the sine is equal to 1 or -1 :

$$V_{\max} = -A\omega \cdot (-1) = A\omega = 0.05 \text{ m} \cdot \pi = 0.157 \frac{\text{m}}{\text{s}}$$

Answer: Equation of motion of a simple harmonic oscillator:

$$x(t) = 0.05 \left(\pi t + \frac{\pi}{4} \right). \text{ maximum speed: } V_{\max} = 0.157 \frac{\text{m}}{\text{s}}$$