Question 35633

Let the ox axis of the coordinate system be parallel to the inclined plane of the ramp. Position of bar as a function of time is $\quad x_{b}(t)=\frac{a_{b} t^{2}}{2}$, where $a_{b}=1.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the given acceleration. Since bowling ball is pushed down $\quad t_{1}=10 s$ later, its position as a function of time is $\quad x_{b b}(t)=v_{0}\left(t-t_{1}\right)+\frac{a_{b b}\left(t-t_{1}\right)^{2}}{2}$, where $v_{0}=5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the initial velocity of the bowling ball and $a_{b b}=1.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration of the bowling ball. When bar and bowling ball meet each other, $\quad x_{b}(t)=x_{b b}(t)$.
This yields an equation for time: $v_{0}\left(t-t_{1}\right)+a_{b b} \frac{t^{2}}{2}-a_{b b} t t_{1}+a_{b b} \frac{t_{1}^{2}}{2}=\frac{a_{b} t^{2}}{2}$, which might be rewritten as $\frac{t^{2}}{2}\left(a_{b b}-a_{b}\right)+t\left(v_{0}-a_{b b} t_{1}\right)-\left[v_{0} t_{1}-a_{b b} \frac{t_{1}^{2}}{2}\right]=0$. This is simple quadratic equation and has solutions $t_{1}=2.6 \mathrm{~s} ; t_{2}=64.07 \mathrm{~s}$. One should choose solution t_{1} (for closest approach).
Finally, plugging in t_{1} into $x_{b}(t)$ or $x_{b b}(t)$ finds the distance $L=\left.x_{b}(t)\right|_{t=2.6 s}=4.06 \mathrm{~m}$.

