Question 35633

Let the ox axis of the coordinate system be parallel to the inclined plane of the ramp. Position of bar as a function of time is $x_b(t) = \frac{a_b t^2}{2}$, where $a_b = 1.2 \frac{m}{s^2}$ is the given acceleration. Since bowling ball is pushed down $t_1 = 10 \, s$ later, its position as a function of time is $x_{bb}(t) = v_0(t-t_1) + \frac{a_{bb}(t-t_1)^2}{2}$, where $v_0 = 5 \frac{m}{s^2}$ is the initial velocity of the bowling ball and $a_{bb} = 1.5 \frac{m}{s^2}$ is the acceleration of the bowling ball. When bar and bowling ball meet each other, $x_b(t) = x_{bb}(t)$. This yields an equation for time: $v_0(t-t_1) + a_{bb} \frac{t^2}{2} - a_{bb} t t_1 + a_{bb} \frac{t_1^2}{2} = \frac{a_b t^2}{2}$, which might be rewritten as $\frac{t^2}{2}(a_{bb}-a_b) + t(v_0-a_{bb}t_1) - [v_0t_1-a_{bb}\frac{t_1^2}{2}] = 0$. This is simple quadratic equation and has solutions $t_1 = 2.6 \, s$; $t_2 = 64.07 \, s$. One should choose solution t_1 (for closest approach). Finally, plugging in t_1 into $x_b(t)$ or $x_{bb}(t)$ finds the distance $L = x_b(t)|_{t=2.6 s} = 4.06 \, m$.