

The gravitational force that the sun exerts on the moon is perpendicular to the force that the earth exerts on the moon. The masses are: mass of sun= 1.99×10^{30} kg, mass of earth= 5.98×10^{24} kg, mass of moon= 7.35×10^{22} kg. The distances shown in the drawing are $r_{SM} = 1.50 \times 10^{11}$ m and $r_{EM} = 3.85 \times 10^8$ m. Determine the magnitude of the net gravitational force on the moon.

Solution:

$$M_s = 1.99 \times 10^{30} \text{ kg} - \text{mass of Sun};$$

$$M_e = 5.98 \times 10^{24} \text{ kg} - \text{mass of Earth};$$

$$M_m = 7.35 \times 10^{22} \text{ kg} - \text{mass of Moon};$$

$$r_{SM} = 1.50 \times 10^{11} \text{ m} - \text{distance to the Moon from the Sun};$$

$$r_{EM} = 3.85 \times 10^8 \text{ m} - \text{distance to the Moon from the Earth};$$

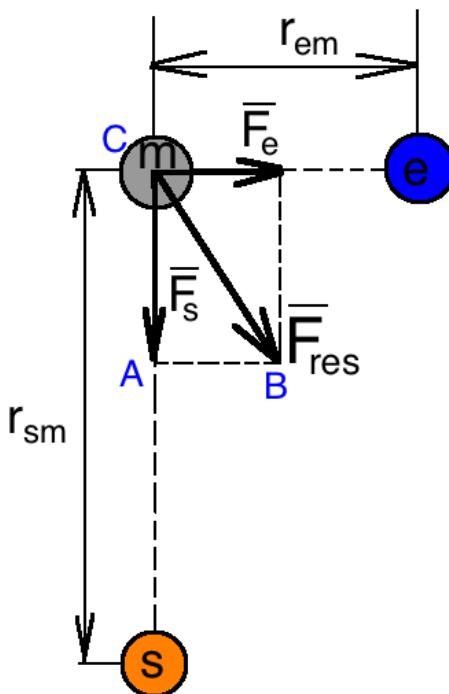
$$G = 6.67 \times 10^{-11} \text{ N} \left(\frac{\text{m}}{\text{kg}} \right)^2 - \text{gravitational constant}$$

The gravitational force that acts on the Moon by the Earth (Law of Gravity):

$$F_e = G \frac{M_e \cdot M_m}{r_{EM}^2} = 6.67 \times 10^{-11} \text{ N} \left(\frac{\text{m}}{\text{kg}} \right)^2 \cdot \frac{5.98 \times 10^{24} \text{ kg} \cdot 7.35 \times 10^{22} \text{ kg}}{(3.85 \times 10^8 \text{ m})^2} = 1.98 \times 10^{20} \text{ N}$$

The gravitational force that acts on the Moon by the Sun (Law of Gravity):

$$F_s = G \frac{M_s \cdot M_m}{r_{SM}^2} = 6.67 \times 10^{-11} \text{ N} \left(\frac{\text{m}}{\text{kg}} \right)^2 \cdot \frac{1.99 \times 10^{30} \text{ kg} \cdot 7.35 \times 10^{22} \text{ kg}}{(1.50 \times 10^{11} \text{ m})^2} = 4.34 \times 10^{20} \text{ N}$$


Net gravitational force on the moon:

$$\vec{F} = \vec{F}_e + \vec{F}_s$$

Pythagorean theorem for a right triangle ABC:

$$F = \sqrt{F_s^2 + F_e^2} = \sqrt{(1.98 \times 10^{20} \text{ N})^2 + (4.34 \times 10^{20} \text{ N})^2} = 4.77 \times 10^{20} \text{ N}$$

Answer: magnitude of the net gravitational force on the moon is 4.77×10^{20} N.

