Relative to the ground, a car has a velocity of 16.7 m/s, directed due north. Relative to this car, a truck has a velocity of 25.0 m/s, directed 52.0° north of east. What is the magnitude of the truck's velocity relative to the ground?

## **Solution:**

 $V_t$  — velocity of the truck relative to the ground;

$$V_{t,c} = 25.0 \frac{m}{s}$$
 – velocity of the truck relative to the car;

$$V_c = 16.7 \frac{\text{m}}{\text{s}}$$
 – velocity of the car relative to the ground;

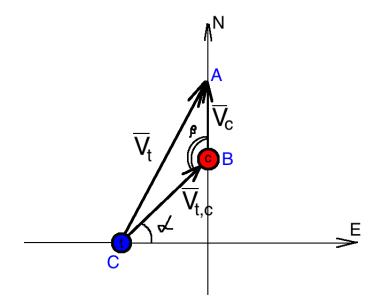
 $\alpha = 52.0^{\circ} -$  the angle between the west

- east direction and the direction of the truck

Formula for the relative velocity of the track:

$$\vec{V}_{t,c} = \vec{V}_t - \vec{V}_c$$

$$\overrightarrow{V_t} = \overrightarrow{V}_{t,c} + \overrightarrow{V_c}$$


The cosine theorem in the triangle ABC ( $\beta=180^{o}-(90^{o}-\alpha)=90^{o}+\alpha$ ):

$$V_{t} = \sqrt{V_{t,c}^2 + V_{c}^2 - 2V_{t,c} \cdot V_{c} \cdot \cos\beta} = \sqrt{V_{t,c}^2 + V_{c}^2 - 2V_{t,c} \cdot V_{c} \cdot \cos(90^o + \alpha)} \,;$$

$$\cos(90^{\circ} + \alpha) = -\sin \alpha \Rightarrow$$

$$V_{t} = \sqrt{\left(16.6 \frac{m}{s}\right)^{2} + \left(25 \frac{m}{s}\right)^{2} + 2\left(16.6 \frac{m}{s}\right) \cdot \left(25 \frac{m}{s}\right) \cdot \sin 52^{\circ}} = 39.43 \frac{m}{s}$$

**Answer:** magnitude of the truck's velocity relative to the ground is  $39.43 \frac{m}{s}$ 

