

Two stones are thrown simultaneously, one straight upward from the base of a cliff and the other straight downward from the top of the cliff. The height of the cliff is 6.63 m. The stones are thrown with the same speed of 8.97 m/s. Find the location (above the base of the cliff) of the point where the stones cross paths.

Solution:

$V_1 = 8.97 \frac{\text{m}}{\text{s}}$ – velocity of the stone, which was thrown up;

$V_2 = 8.97 \frac{\text{m}}{\text{s}}$ – velocity of the stone, which was thrown down;

$H = 6.63 \text{ m}$ – height of the cliff;

h – height of the point where the stones cross paths (above the base of the cliff).

The equation of motion for the first stone (which was thrown up) respect to the Y-axis:

$$y_1 = V_1 t - \frac{gt^2}{2} \quad (1)$$

The equation of motion for the second stone (which was thrown down) respect to the Y-axis:

$$y_2 = H - V_2 t - \frac{gt^2}{2} \quad (2)$$

When stones the stones cross paths, their coordinates are equal:

$$y_2 = y_1 \quad (3)$$

(3)and (2)in (1):

$$V_1 t_{\text{cross}} - \frac{gt_{\text{cross}}^2}{2} = H - V_2 t_{\text{cross}} - \frac{gt_{\text{cross}}^2}{2}$$

$$H = t_{\text{cross}}(V_2 + V_1)$$

$$t_{\text{cross}} = \frac{H}{V_2 + V_1} \quad (4)$$

$$\begin{aligned} h &= y_2(t_{\text{cross}}) = y_1(t_{\text{cross}}) = V_1 t_{\text{cross}} - \frac{gt_{\text{cross}}^2}{2} = \frac{V_1 H}{V_2 + V_1} - \frac{gH^2}{2(V_2 + V_1)^2} = \\ &= \frac{H}{V_2 + V_1} \left(V_1 - \frac{gH}{2(V_2 + V_1)} \right) = \frac{6.63 \text{ m}}{8.97 \frac{\text{m}}{\text{s}} + 8.97 \frac{\text{m}}{\text{s}}} \left(8.97 \frac{\text{m}}{\text{s}} - \frac{9.8 \frac{\text{m}}{\text{s}^2} \cdot 6.63 \text{ m}}{2 \left(8.97 \frac{\text{m}}{\text{s}} + 8.97 \frac{\text{m}}{\text{s}} \right)} \right) \\ &= 2.65 \text{ m} \end{aligned}$$

This means that paths will cross on a hight $h = 2.65 \text{ m}$ where each Y-coordinate is 2.65 m ($y_2 = y_1 = 2.65 \text{ m}$).

The location (above the base of the cliff) of the point where the paths of the stones will cross:

$$h = 2.65 \text{ m}$$

Answer: paths will cross at the height $h = 2.65 \text{ m}$ above the base of the cliff.