At noon a ship S1 is 20 miles north of a ship S2. If S1 is sailing south at a rate of 6 miles per hour and S 2 is sailing east at a rate of 8 miles per hour, find the time when they are nearest together.

Solution:

Let t - the travel time in hours of both ships.
$L=20$ - the distance between the ships at the beginning of the movement.
$V_{1}=6 \frac{\text { mile }}{\text { hour }}$ - rate of the sheep S1
$V_{2}=6 \frac{\text { mile }}{\text { hour }}$ - rate of the sheep S1
Then:
$6 t=$ travel dist of the S1 (sailing north toward the ref point C)
$8 t=$ travel dist of the S2 (sailing west from the ref point C)

The two ships course form a right triangle from the ref points A, B and C. $\left(\angle A C B=90^{\circ}\right)$
The distance between the two ships, is the hypotenuse (S):

$$
\begin{gathered}
S^{2}=(20-6 t)^{2}+(8 t)^{2} \\
S^{2}=400-240 t+36 t^{2}+64 t^{2} \\
S^{2}=100 t^{2}-240 t+400
\end{gathered}
$$

distance between ships is minimum when the derivative $\frac{d S}{d t}$ is zero (local minimum of the function):

$$
\begin{gathered}
S=\sqrt{100 t^{2}-240 t+400} \\
\frac{d S}{d t}=\frac{1}{2 \sqrt{100 t^{2}-240 t+400}} \cdot(200 t-240)=0
\end{gathered}
$$

$$
\begin{gathered}
200 t-240=0 \\
t=\frac{240}{200}=1.2 \text { hour }
\end{gathered}
$$

After the time $t=1.2$ hour ships will be nearest together at a minimum distance:

$$
S_{\text {min }}=S(1.2)=\sqrt{100 \cdot(1.2)^{2}-240 \cdot 1.2+400}=16 \text { miles }
$$

Answer: after the time $t=1.2$ hour ships will be nearest together at a minimum distance $S_{\text {min }}=16$ miles.

