we need 3rd Kepler's law to solve this problem. According to this law,
$\mathrm{t} 1^{\wedge} 2 / \mathrm{t} 2^{\wedge} 2=\mathrm{a} 1^{\wedge} 3 / \mathrm{a} 2^{\wedge} 3$
where a is semimajor axis and t is period. So we find
$\mathrm{t} 2=\mathrm{t} 1(\mathrm{a} 2 / \mathrm{a} 1)^{\wedge}(3 / 2)$
knowing that for Earth t1=1 year, a1=1 au, we can see
$\mathrm{t} 2=1^{*}(4 / 1)^{\wedge} 3=1^{*} 8=8$ years
answer is 8 years

