

Question 34893

Let us use Gauss law to find the magnitude of the electric field, created by the point charge Q :
 $\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$. Integrating the last expression, and using divergence theorem $\int \operatorname{div} \vec{E} dV = \oint_S \vec{E} \cdot d\vec{S}$,
obtain $\oint_S \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int \rho dV = \frac{Q}{\epsilon_0}$. For a spherical surface of radius R this expression is the
following: $4\pi R^2 E = \frac{Q}{\epsilon_0}$, which yields $E = \frac{Q}{4\pi \epsilon_0 R^2} = \frac{kQ}{R^2}$, where $k = \frac{1}{4\pi \epsilon_0} = 8.99 \cdot 10^9 \frac{Nm^2}{C^2}$.

$$\text{Hence, for } Q = 10^{-4} C, R = 0.3 m, \quad E = \frac{8.99 \cdot 10^9 \frac{Nm^2}{C^2} \cdot 10^{-4} C}{(0.3)^2 m^2} = 9.99 \cdot 10^6 \frac{N}{C} .$$