

Q. A stone, of mass m , is attached to a strong string and whirled in a vertical circle of radius r . At the exact bottom of the path the tension in the string is 3 times the stone's weight. The stone's speed at this point is given by ...?
 A. $2gr)^{1/2}$.

please explain everything in detail

Solution:

Newton's second law for the stone At the exact bottom of the path:

$$m\vec{g} + \vec{T} = m\vec{a}_c = \vec{F}_{centr}$$

mg - stone's weight;

$T = 3mg$ - tension in the string;

F_{centr} - Centripetal force (the stone is going in a circle);

a_c - centripetal acceleration.

Projection on the Y-axis:

$$y: T - mg = ma_c \quad (1)$$

at the bottom the tension is 3 times the stone's

weight:

$$T = 3mg \quad (2)$$

Formula for centripetal acceleration:

$$a_c = \frac{V^2}{r} \quad (3)$$

(3) and (2) in (1):

$$3mg - mg = m \frac{V^2}{r}$$

$$2mg = m \frac{V^2}{r}$$

$$2gr = V^2$$

$$V = \sqrt{2gr}$$

Answer: The stone's speed at the exact bottom of the path is given by $V = \sqrt{2gr}$