

A horizontal force of 600 N pulls two masses 10kg and 20kg lying on a frictionless surface connected by a light string. What is the tension in the string? Does the answer depend on the which mass end the pull is applied?

Solution:

Because the string is thin and inextensible, then:

$$\vec{T} = -\vec{T}'; |\vec{T}| = |\vec{T}'|$$

The general case (instead of mass 10kg and 20kg $\rightarrow m_1$ and m_2 , $F = 600N$)

Newton's second law for the mass m_1 :

$$\vec{m_1 g} + \vec{N_1} + \vec{T} = m_1 \vec{a}$$

$$x: T = m_1 a \quad (1)$$

Newton's second law for the mass m_2 :

$$\vec{m_2 g} + \vec{N_2} + \vec{T} + \vec{F} = m_2 \vec{a}$$

$$x: F - T' = m_2 a \quad (2)$$

$$T = T'$$

$$(1) \text{ in } (2): F - m_1 a = m_2 a$$

$$a = \frac{F}{m_1 + m_2} \quad (3)$$

$$(3) \text{ in } (1): T = m_1 a = \frac{m_1 F}{m_1 + m_2}$$

If $m_1 = 10\text{kg}$ and $m_2 = 20\text{kg}$:

$$T = \frac{10\text{kg} \cdot 600\text{N}}{10\text{kg} + 20\text{kg}} = 200\text{N}$$

If $m_1 = 20\text{kg}$ and $m_2 = 10\text{kg}$:

$$T = \frac{20kg \cdot 600N}{10kg + 20kg} = 400N$$

Answer: if end the pull is applied to mass $20kg$, tension in the string is $T = 200N$; if end the pull is applied to mass $10kg$, tension in the string is $T = 400N$.