

Task. Man weighs $m_1 = 100$ kg hurries forward at $v_1 = 0.500$ m/sec. The boat he is in weighs $m_2 = 155$ kg moves backward at some other velocity, v_2 . What is that velocity?

Solution. Assume that the system “man-boat” is closed and its total impulse is zero. In particular, there is no water resistance.

Then the total impulse of the system is given by the formula:

$$\vec{p} = m_1 \vec{v}_1 + m_2 \vec{v}_2 = 0.$$

Notice that \vec{v}_1 and \vec{v}_2 have opposite directions, so

$$p = m_1 v_1 - m_2 v_2 = 0.$$

Hence

$$m_1 v_1 = m_2 v_2 \quad \Rightarrow \quad v_2 = \frac{m_1 v_1}{m_2}.$$

Substituting values we obtain

$$v_2 = \frac{m_1 v_1}{m_2} = \frac{100 * 0.5}{155} = 0.32 \text{ m/s.}$$

Answer. $v_2 = 0.32$ m/s.