

Answer on Question #33232 - Physics - Mechanics – Relativity

A 115kg kg mail bag hangs by a vertical rope 3.6m m long. A postal worker then displaces the bag to a position 2.1m m sideways from its original position, always keeping the rope taut.

- 1) What horizontal force is necessary to hold the bag in the new position?
- 2) As the bag is moved to this position, how much work is done by the rope?
- 3) As the bag is moved to this position, how much work is done by the worker?

Solution

- 1) Use Newton's second law (the bag is in equilibrium) for the bag held by the postal worker:

$$Ox: T \sin \alpha - F_h = 0,$$

$$Oy: T \cos \alpha - mg = 0.$$

From the triangle:

$$\alpha = \arcsin \frac{h}{l}$$

Thus

$$F_h = mg \tan \alpha = mg \tan \arcsin \frac{h}{l} = 115 \cdot 9.8 \cdot \tan \left(\arcsin \frac{2.1}{3.6} \right) = 809.4 \text{ N.}$$

2) The tension of the rope is radial, the displacement is tangential (perpendicular to the rope), that is why rope does the work of

$$W_R = T \cdot d \cdot \cos 90^\circ = 0.$$

3) Before the postal worker touches the bag its potential energy is 0 relative to the line crossing the bag. After applying the force its potential energy relative to the same line before interaction is

$$E_P = mgh = mg(l - l \cos \alpha) = 115 \cdot 9.8 \cdot 3.6 \left(1 - \cos\left(\arcsin \frac{2.1}{3.6}\right)\right) = 761.8 \text{ J.}$$

The work done is

$$W = E_P - 0 = 761.8 \text{ J.}$$

Answers

- 1) 809.4 N;
- 2) 0;
- 3) 761.8 J.

Answer provided by <https://www.AssignmentExpert.com>