

Question 33179

Let h denote the height of the building. For motion upward until stop, $y = h + v_0 t - \frac{gt^2}{2}$. At the moment of stop, $v = v_0 - gt_s = 0$, therefore t_s - time of movement until stop at maximum height is $t_s = \frac{v_0}{g}$. Plugging in this expression into coordinate, obtain $y_s = h + \frac{v_0^2}{2g}$ - the height at the moment of stop.

Then, motion down is without acceleration. Hence, $v = gt$, and $y = y_s - \frac{gt^2}{2}$. When ball reaches the ground ($y = 0$), from here obtain the time of movement from highest point to the ground -

$$t_f = \sqrt{\frac{2y_s}{g}} = \sqrt{\frac{2}{g} \left(h + \frac{v_0^2}{2g} \right)} . \text{ Thus, velocity at which the ball hits the ground is}$$
$$v = gt_f = \sqrt{2g \left(h + \frac{v_0^2}{2g} \right)} = 28.28 \frac{m}{s} .$$

Total time of the journey is $t = t_s + t_f = \frac{v_0}{g} + \sqrt{\frac{2}{g} \left(h + \frac{v_0^2}{2g} \right)} \approx 4.83 s$.