

A car starts from rest & Accelerates uniformly at the rate of 1m/s for 5sec. It then maintains a constant velocity for 30 sec. Then brakes are applied & the car is uniformly retarded to rest in 10 sec. Find the maximum velocity attained by the car & the total distance travelled by it.

1. Acceleration:

$$v = at_a - \text{maximum velocity}$$

$t_a$  – time of acceleration

$a$  – acceleration

Distance travelled:

$$l_a = \frac{at_a^2}{2}$$

2. Uniform motion:

Distance travelled:

$$l_u = v * t_u = at_a t_u$$

$t_u$  – time of uniform motion

3. Deceleration

$$v = a't_d$$

$t_d$  – time of deceleration

$$a' = \frac{v}{t_d}$$

Distance travelled:

$$l_d = \frac{a't_d^2}{2} = \frac{vt_d}{2} = \frac{at_a t_d}{2}$$

Total distance:

$$\begin{aligned} l &= l_a + l_u + l_d = \frac{at_a^2}{2} + at_a t_u + \frac{at_a t_d}{2} = at_a \left( \frac{t_a}{2} + t_u + \frac{t_d}{2} \right) \\ &= 1 \frac{m}{s^2} * 5s \left( \frac{5}{2}s + 30s + \frac{10}{2}s \right) = 5 \left( \frac{75}{2} \right) m = 187.5 m \end{aligned}$$

Maximum velocity:

$$v = at_a = 1 \frac{m}{s^2} * 5s = 5 \frac{m}{s}$$

Answer:  $l = 187.5 \text{ m}$ ,  $v_{max} = 5 \frac{m}{s}$