Question 32899

Let the initial y-component be h
For accelerated motion, velocity is $v=v_{0}+a t$. There is no horizontal acceleration (only vertical acceleration $g=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ according to gravity). Initial velocity $v_{0}=v_{0 \mathrm{x}}$ only has horizontal component.
Therefore, $v_{x}=v_{0}, \quad v_{y}=-g t$.
Integrating previous two equations, obtain: $\quad x(t)=v_{0} t ; y(t)=h-\frac{g t^{2}}{2}$.
In order to obtain path in usual form $y=y(x)$, exclude t from $y(t)$ by expressing it from $x(t) \quad\left(t=\frac{x(t)}{v_{0}}\right)$:
$y(x)=h-\frac{g x^{2}}{2 v_{0}^{2}}$ - this is the equation for the path of a projectile fired parallel to horizontal.

