If both, the mass and the radius of the earth decrease by 1%, what will be the $\%$ change in the gravitational acceleration ?

Solution:

Gravitation acceleration on the surface of the Earth is given by:

$$
g=\frac{G M}{R^{2}}
$$

Where G is the gravitational constant, M is mass of the Earth and R is the radius of the Earth.
According to the problem:

$$
\begin{aligned}
M_{2} & =0.99 \mathrm{M} \\
R_{2} & =0.99 R
\end{aligned}
$$

Thus:

$$
g_{2}=\frac{G *(0.99 M)}{(0.99 R)^{2}}=\frac{0.99}{(0.99)^{2}} \frac{G M}{R^{2}}=\frac{0.99}{(0.99)^{2}} * g \approx 1.01 \mathrm{~g}
$$

So in the gravitational acceleration will increase by approximately 1%.
Answer: the gravitational acceleration will increase by approximately 1%.

