Question 32839

N=1000 , $B_0=0.1T$, v=120Hz , $S=30cm^2$.

The induced emf, according to Faraday's law is $\varepsilon = \frac{-\partial \Phi}{\partial t}$.

The magnetic flux might be expressed as $\Phi(t) = NBS$. It is more convenient to let the magnetic field rotate (not the coil). Thus, magnetic field as the function of time is

 $B(t) = B_0 \cos(\omega t) = B_0 \cos(2\pi v t) \quad .$

Then, EMF as a function of time is $\epsilon(t) = 2\pi B_0 v N S \cdot \sin(2\pi v t)$.

Obviously, the peak value reaches when sine function is equal to one (the amplitude). Hence, the peak value of induced EMF is $\varepsilon_{max} = 2\pi B_0 N S v = 226.195 V \approx 226.2 V$. The answer is d)