

Question

Motion in horizontal direction is described by the equation: $x = v_0 \cdot \cos 44^\circ \cdot t$, where t is time of motion and v_0 is initial velocity. From this equation we can find time (t):

$$x = v_0 \cdot \cos 44^\circ \cdot t \Rightarrow t = \frac{x}{v_0 \cdot \cos 44^\circ}.$$

Motion in vertical direction is described by the equation: $y = v_0 \cdot \sin 44^\circ \cdot t - \frac{g \cdot t^2}{2}$. We

know time from previous equation, so we will have:

$$\begin{aligned} y &= v_0 \cdot \sin 44^\circ \cdot \frac{x}{v_0 \cdot \cos 44^\circ} - \frac{g}{2} \cdot \left(\frac{x}{v_0 \cdot \cos 44^\circ} \right)^2 = \\ &= x \cdot \tan 44^\circ - \frac{g \cdot x^2}{2 \cdot \cos^2 44^\circ} \cdot \left(\frac{1}{v_0} \right)^2 \Rightarrow \frac{g \cdot x^2}{2 \cdot \cos^2 44^\circ} \cdot \left(\frac{1}{v_0} \right)^2 = x \cdot \tan 44^\circ - y \Rightarrow \\ &\Rightarrow \left(\frac{1}{v_0} \right)^2 = \frac{2 \cdot \cos^2 44^\circ \cdot (x \cdot \tan 44^\circ - y)}{g \cdot x^2} \Rightarrow \frac{1}{v_0} = \sqrt{\frac{2 \cdot \cos^2 44^\circ \cdot (x \cdot \tan 44^\circ - y)}{g \cdot x^2}} \Rightarrow \\ &\Rightarrow v_0 = \sqrt{\frac{g \cdot x^2}{2 \cdot \cos^2 44^\circ \cdot (x \cdot \tan 44^\circ - y)}} \end{aligned}$$

We know that in our case $y = 3$ meters and $x = 11$ meters, $g = 9.81 \frac{m}{s^2}$. So, we will

$$\text{have: } v_0 = \sqrt{\frac{9.81 \cdot 11^2}{2 \cdot \cos^2 44^\circ \cdot (11 \cdot \tan 44^\circ - 3)}} = 12.27 \frac{m}{s}.$$

Answer: $12.27 \frac{m}{s}$.