7 A platinum resistance thermometer has resistance of 52.5 ohms and 9.75 ohms at 0 degrees Celsius and 100 degrees Celsius respectively. When the resistance is 8.25 ohms, find the temperature.

Solution

As is well known, resistance is growing when the temperature is growing.

So, we have from condition of the problem, that platinum resistance thermometer has resistance of R_1 =52.5 ohms at t_1 =100 degrees Celsius and R_0 =9.75 ohms at t0=0 degrees Celsius.

If the resistance depends on temperature due to linear law $R = R_0 + at \Rightarrow$,

$$R_0 = 9.75Ohms$$
$$a = \frac{R_1 - R_0}{t_1 - t_0} = \frac{525Ohms - 975Ohms}{100 \text{ deg}} = 0.4275 \frac{Ohms}{\text{ deg}}$$

From whence we have that the temperature for the resistance $R_2 = 8.25$ ohms is

$$t_2 = t_0 + \frac{R_2 - R_0}{a} = 0 - \frac{1.5Ohms}{0.4275 \frac{Ohms}{deg}} \approx -3.51 deg$$

Answer

 $t_2 \approx -3,51 \deg$