What should be the length of nichrome wire of resistance 4.5 ohms if the length of similar wire is 60 cm and resistance 2,5 ohms?

The resistance of a given object depends primarily on two factors: What material it is made of, and its shape. For a given material, the resistance is inversely proportional to the cross-sectional area. Also, for a given material, the resistance is proportional to the length. The resistance R of a conductor of uniform cross section, therefore, can be computed as

$$
R=\frac{\rho l}{A}
$$

where l is the length of the conductor, measured in metres [m], A is the crosssection area of the conductor measured in square metres [m^{2}], and ρ (rho) is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres $(\Omega \cdot m)$.

Therefore:

$$
\begin{aligned}
& R_{1}=\frac{\rho l_{1}}{A} \\
& R_{2}=\frac{\rho l_{2}}{A}
\end{aligned}
$$

Or:

$$
\frac{R_{2}}{R_{1}}=\frac{l_{2}}{l_{1}}
$$

Finally:

$$
l_{2}=\frac{l_{1} R_{2}}{R_{1}}=60 \mathrm{~cm} * \frac{4.5}{2.5}=108 \mathrm{~cm}
$$

Answer: 108 cm

