Question 32639

Let the total distance be L. Then particle has moved $L / 2$ at velocity $v_{1}=3 \mathrm{~m} / \mathrm{s}, L / 4$ at velocity $\quad v_{2}=3.5 \frac{\mathrm{~m}}{\mathrm{~s}}$ and $L / 4$ at velocity $v_{3}=7.5 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Average velocity is $\quad v=\frac{L}{t}$, where t is the time needed to cover the whole distance.
Time to travel each distance is (knowing the velocities):
$t_{1}=\frac{\frac{L}{2}}{v_{1}} ; t_{2}=\frac{\frac{L}{4}}{v_{2}} ; t_{3}=\frac{\frac{L}{4}}{v_{3}}$.
Total time is $t=t_{1}+t_{2}+t_{3}$.
Therefore, average velocity is $v=\frac{L}{t}=\frac{L}{\frac{L}{2 v_{1}}+\frac{L}{4 v_{2}}+\frac{L}{4 v_{3}}}=\frac{1}{\frac{1}{2 v_{1}}+\frac{1}{4 v_{2}}+\frac{1}{4 v_{3}}}=\frac{90}{23} \frac{\mathrm{~m}}{\mathrm{~s}} \approx 3.91 \frac{\mathrm{~m}}{\mathrm{~s}}$.

