Suppose we are told the acceleration of a particle moving in a circle of a radius r with uniform speed v is proportional to some power of r say n, some power of v, say m. Determine the powers of r and v ?

Solution

We will use dimensional method.
The dimension of \boldsymbol{v} is $[v]=\left[\frac{\text { meter }}{\sec \text { ond }}\right]=\left[\frac{m}{s}\right]$.
The dimension of \boldsymbol{r} is $[r]=[$ meter $]=[m]$.
The dimension of acceleration is $[a]=\left[\frac{\text { meter }}{\sec \text { ond }^{2}}\right]=\left[\frac{m}{s^{2}}\right]$
If $a \propto V^{n} r^{m}$, we have
$[a]=\left[V^{n} r^{m}\right]=\left[\frac{m}{s}\right]^{n}[m]^{m}=\left[\frac{m}{s^{2}}\right]$
From whence we get the following system of equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
n+m=1 \\
n=2
\end{array} \Rightarrow\right. \\
& \left\{\begin{array}{l}
m=-1 \\
n=2
\end{array} \Rightarrow\right.
\end{aligned}
$$

From whence (using dimensional method we don't know the coefficient of proportionality):

$$
a \propto \frac{V^{2}}{r} .
$$

Answer:

$$
\left\{\begin{array}{l}
m=-1 \\
n=2
\end{array}\right.
$$

$a \propto \frac{v^{2}}{r}$

